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Summary  
 
The frequency/time dispersion of the electric properties of rocks is 
intensively investigated in geo-electromagnetics. In particular, the strong 
disperson effects in transient geo-electromagnetics, like non-monotonous 
transient response, sign reversals etc., have been considered by many 
authors. The aim of this paper is to describe the electromagnetic field in 
dispersive media in the most general form. The validility of replacing 
constant parameters with frequency/time variable ones is the subject to 
analysis as well. It is emphasized first of all that Maxwell’s equations 
written in canonical form are universal ones to describe the 
electromagnetic (EM) field both in non-dispersive and dispersive media, 
provided material correlations are presented by Duhamel integrals. It is 
shown that in the time domain additional conduction and displacement 
currents appear due to changes of conductivity and permittivity 
parameters with time. Methods of changing constant parameters with time 
variable ones are principally not correct in time domain and correct in 
frequency domain. It is shown, however, that separate analysis of 
dispersion of conductivity or permittivity is impossible. EM field defined by 
the complex admittivity including both frequency dependent conductivity 
and permittivity is to be analyzed.  

 
 
1.  Introduction 
 
The object to analysis by geo-electromagnetics is the response due to a geo-
electrical medium. It is normally a half-space consisting of homogeneous entities. To 
simplify the analyses we believe that the rock’s electromagnetic properties inside the 
entities possess no space-gradient and no anisotropism. Rocks are considered here 
to be macro-homogeneous, a result of being natural composite micro-heterogeneous 
(multi-component and/or multi-phase) media. They are characterized by effective 
values of electromagnetic parameters (conductivity σ, permittivity ε  and magnetic 
permeability μ) obtained by averaging the electromagnetic (EM) field in a relatively 
small volume, much larger, however, then the dimensions of separate components 
composing the medium. It was determined, both experimentally and theoretically, 
that the media of the sort display the dispersion of the parameters above, which are 
in this case time/frequency dependent in time/frequency domains respectively. This 
dispersion is intensively investigated in geo-electromagnetics.  
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The low frequency dispersion of conductivity investigated in quasi-stationary time 
domain, where common displacement currents are neglected, is known as induced 
polarization (IP). In particular, the numerous strong IP effects in transient geo-
electromagnetics, like non-monotonous behavior of transient response, sign 
reversals etc. obtained by laboratory and field measurements, as well as by 
mathematical modeling, have been reported by many authors. Typical results of 
physical studies of EM transients inductively energized in rock samples and affected 
by IP (Kamenetsky and Novikov, 1997) are given in Figure 1. Sign reversals are 
clearly seen at different time positions for different rock’s types with one and the 
same ohmic resistivity 3.3 Ohm⋅m.  

 

 
 

 
 

Fig. 1. Induction transients of samples with one and the same resistivity: 
1 – clay, 2 – sand, 3 – clay-sand, 4 – active equivalent (3.3 Ohm⋅m). 

Θ- negative response.

Additional studies have been done to examine the phenomenon of the unusually high 
resolution of transient geo-electromagnetics (sometimes comparable to that of 
seismics) experimentally observed while exploring sedimentary formations mainly for 
oil and gas (Safonov et al., 1996). It was shown by mathematical modeling that the IP 
effect can be considered as one of the probable causes of the phenomenon. 
However, its mechanism was not explained in the framework of classic 
electrodynamic theory and is still not fully understood. Terms like “non-classical geo-
electromagnetics/geo-electrics” have been also introduced to emphasize that the 
mentioned above polarization phenomena cannot be described by Maxwell’s 
equations (Svetov, 1995).  
As for IP effects in the low frequency EM, it was much less investigated and reported, 
especially in studying sedimentary formations. For example, it is almost always 
ignored in magnetotellurics (MT), except for very few works like (Porstendorfer, 
1987). For sedimentary rocks the so-called “fast IP” are typical with a very short time 
constant (mach shorter then a period of the MT variations). That means that the 
sedimentary rocks are completely polarized at such low frequencies and 
characterized by the stationary value of conductivity ( )m−= ∞ 10 σσ , where  is 
chargeability and 

m

∞σ  is the true (with no polarization) conductivity at higher 
frequencies. The stationary conductivity is, therefore, in most cases the only 
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parameter, which is recovered by MT and other low frequency EM methods. The 
possibility to extract in this case additional information about IP parameters is a 
separate subject of research which is outside the scope of the present paper. 
The study of IP effects in geo-electromagnetics includes: (1) experimental 
investigations of rock’s polarization properties, (2) investigation of the same on the 
basis of models where the nature of dispersion is known, and (3) theoretical analysis 
(as well as mathematical modeling) of an affection of the EM data by IP. The 
combination of (2) and (3) was developed in the fundamental work of Sheinmann 
(1969) by introducing the ion’s diffusion currents in the fluid phase of rocks into the 
second Maxwell equation. This approach introduces numerous new parameters for 
each particular type of polarization. The phenomenological approach is most 
commonly used (Kormil’tsev, 1989, Wait, 1959), where different IP effects are 
described by a small number of phenomenological parameters, such as chargeability 
and time constant, irrespective of the polarization nature. 
To solve electrodynamic problems for dispersive media in the time domain, Maxwell’s 
equations are normally transformed into equations of the second order 
(Telegrapher’s, or heat-flow equation in the quasi-stationary case), first with 
parameters σ and/or ε independent of time. Afterwards, the change of the EM field 
with time change of parameters is taken into account by different ways of replacing 
them with time dependent ones. Otherwise, the time domain solutions are obtained 
by the spectral method, i. e. by solving Helmholtz equation first with frequency 
independent parameters σ, ε, and then by replacing them with frequency dependent 
ones and applying the inverse Fourier/Laplace transform to the solution in frequency 
domain.  
The aim of this paper is to describe the electromagnetic field in dispersive media in 
the most general form. The validity of replacing constant parameters with variable 
ones is the subject to analysis as well. Firstly, we pay attention of the readership to 
that Maxwell’s equations themselves written in canonical form are not limited to non-
dispersive media and valid in dispersive media as well. As for the equations of the 
second order, we show that the replacing approach above is valid in frequency 
domain and principally not valid in time domain. These equations for dispersive and 
non-dispersive media are found to be different in time domain and the same in 
frequency domain. We prove the same by practical example of the dispersion with a 
simple known nature. 
 
 
2.  Maxwell’s equations  
 
The canonical form of the system of Maxwell’s equations in medium with no free 
electric charges is the following: 
 

0 IV. 0, III. ,j II. ,- I. c ==
∂
∂

+=
∂
∂

= BDDHBE divdiv
t

curl
t

curl .    (1) 

 
Here and below:  
E, H are electric and magnetic fields, 
D, B – electric and magnetic inductions, 
jc – the conduction current density. 
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Assuming the medium parameters σ, ε, μ are non-dispersive ones, i. e. independent 
of time, then the system (1) is accompanied by equations of material correlations of 
the form: 
 

HB     E,D     E,jc μεσ === .                                                   (2) 
 
This independence, however, is not inherent into the system (1) of equations I-IV 
above which are valid for dispersive media as well, irrespective of the nature of 
dispersion. As for material correlations (2), they are to be generalized.  
IP was firstly introduced into Maxwell’s equations by Kormiltsev (1989). Following 
Kormiltsev, the system (1) is to be accompanied in this case by equations of material 
correlations presented in form of Duhamel integrals for combinations of EM field 
components with the so-called “after-effect” functions.  
To develop this idea we prefer more compact equivalent form of the same using the 
Duhamel integrals for combinations of electric field component directly with 
parameters σ and ε (Kamenetsky. 2002). This approach is, to our mind, not only 
more natural, but will afford a better understanding of the phenomena in question. 
We shall use the symbol * for the Duhamel integral, that means for the operator  
 

( ) ( ) λλλ dtf
dt
df

t

−⋅= ∫ FF
0

* ,                                                                        (3) 

 
where F and f are field component and parameter of the medium correspondingly. 
We shall use also the following auxiliary formulae while differentiating Duhamel 
integrals (see Appendix A): 
 

( ) ( ) ( ) ( ) λ
λ
λλ dfttf

t

∫ ∂
∂

−+=
0

FF0fF* ,                                                              (A1) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) λλ
λ
λ dtft

t
tf

t
tff

t

t

t −
∂

∂
+

∂
∂

+
∂

∂
=

∂
∂

∫= FFF0F*
0

2

2

0 ,                     (A2) 

 

( )
t

ff
t ∂

∂
=

∂
∂ FF ** .                                                                              (A3) 

 
In the general case (including both dispersive and non-dispersive media) instead of 
(2) one has to write 
 

HB     E,D     E,jc μεσ === ** .1                                                         (4) 
 
By taking into account the correlations (4) the system (1) of Maxwell’s equations can 
be rewritten for dispersive media in the following generalized form  
 

                                                           
1 We confine ourselves here with the time/frequency independent magnetic 
permeability.  
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( ) ( ) 0 IV. 0,* III. ,** II. ,- I. ==
∂

∂
+=

∂
∂

= BEEEHBE divdiv
t

curl
t

curl εεσ . (5) 

 
Since ε  is not space-dependent parameter, ( ) E*E*EE divdiv*grad*div εεεε =+= , 
and the equation III in (5) can be replaced by 0=Ediv . Then finally  
 

( ) 0 IV. 0, III. ,** II. ,- I. ==
∂

∂
+=

∂
∂

= BEEEHBE divdiv
t

curl
t

curl εσ .         6) 

 
There are, therefore, certain features which are to be taken into account while solving 
electrodynamic problems in dispersive media. As for non-dispersive media, it can be 
easy shown, that material correlations (4) are reduced to (2) assuming parameters σ, 
ε independent of time, and all the Duhamel integrals in Maxwell’s equations (6) 
replaced by products of the electric field and medium parameters. 
 
 
3.  Conduction current  
 
Assuming zero initial value of the electric field in accordance with (A1), the 
conduction current is of the form: 
 

( ) ( ) ( ) ( ) ( ) λλ
λ
λσσσ dttt

t

∫ −
∂

∂
+==

0

0* EEEjc
.                                                      (7) 

 
Therefore, there exists in a dispersive medium, the additional (compared to non-
dispersive one) conduction current proportional to the time derivative of conductivity. 
If to assume the change of conductivity with time is slow enough to neglect the last 
term in (7), then the conduction current is described by the first term of (7) only and 
reacts the same as in non-dispersive medium. 
It is also seen from (7) that ( ) ( ) ( ) 0000 == Ejc σ . We assume also that E(t) tends 
with time to some stationary value E(∞). One observes then from (7) that 
( ) ( ) ( )∞∞=∞ Eσcj .  

Suppose now that the electric field applied to the dispersive medium has the form of 
the step-function . In this case the equation (7) gives ( ) ( )tt 1⋅= EE
 
( ) ( ) ( )ttt 1⋅= Ejc σ ,                                                                                  (8) 

 
from which it is clear that ( )tσ  can make sense of the transient conductivity or the 
reaction of the dispersive medium to the step-change of the voltage applied (which is 
typical for the case of induction energizing the medium). 
 
 
4.  Displacement current 
 
Assuming again zero initial value of the electric field in accordance with (A2), the 
displacement current is of the form: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .0*
0

2

2

0 λλ
λ
λεεεε dtt

t
t

t
t

t
t

t

t −
∂

∂
+

∂
∂

+
∂

∂
=

∂
∂

= ∫= EEEEjd               (9) 

 
Therefore, exist in dispersive medium the additional (compared to non-dispersive 
one) displacement currents proportional to the first and second time derivatives of 
permittivity. 
If the change of permittivity with time is so slow that it is justified to neglect the last 
term in (9), then the displacement current equals  
 

( ) ( ) ( ) ( ) ( )t
t
t

t
tt t EEjd 00 =∂

∂
+

∂
∂

=
εε .                                                            (10) 

 
The first term in (10) presents the common displacement current with constant value 
of permittivity ε(0) like in non-dispersive medium. The second term in (10) can be 
rather treated as the additional conduction current caused by the change of 
permittivity with time. Then, instead of the first term of (7), one has to write the 
summary conduction current in dispersive medium with slow time change of electric 
parameters as 
 

( ) ( )tcs Ej 0γ= ,                                                                                       (11) 
 
where the summary conductivity (admittivity) 
 

( ) ( ) ( )
000 =∂

∂
+= tt

tεσγ .                                                                          (12) 

 

It is also seen from (10) that ( ) ( ) ( ) ( )000 0=∂
∂

= tt
tEjd ε  and 

( ) ( ) ( ) ( ) ( )∞
∂

∂
+

∂
∂

=∞ ∞→∞→ EEjd tt t
t

t
t εε 0 . 

In case of the step changed electric field or voltage is applied to the dispersive 
medium, the equation (9) gives  
 

( ) ( ) ( ) ( ) ( ) ( ) 0at      t or      ,1tt0 >⋅
∂

∂
=⋅

∂
∂

+= t
t

t
t

t EEEjd
εεδε ,                    (13) 

 
from which it is clear that in this case (either in dispersive medium or not) the normal 
displacement current proportional to the constant permittivity ( )0ε  does not exist at 

.0>t 2  
As for the dispersive medium, it makes sense to consider the time derivative of the 

transient permittivity ( )
t
t

∂
∂ε  as the reaction of the medium to the step-change of 

voltage applied. This reaction produces not the displacement current, rather the 
additional conduction one. Then, according to (8) and (13), the summary current (one 

                                                           
2 The position is different in case of the step changed current is applied to the medium (which is typical 
for galvanic energising the medium and not considered here). 
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can say – the summary conduction current) at t>0 due to the step-changed voltage 
applied can be written as 
 

( ) ( ) Ejcs ⎥⎦
⎤

⎢⎣
⎡

∂
∂

+=
t
tt εσ ,                                                                      (14) 

 
and the summary transient conductivity (admittivity) - as 
 

( ) ( ) ( )
t
ttt

∂
∂

+=
εσγ .                                                                                (15) 

 
Therefore, parameters σ  and ε  are not to be considered in dispersive media as 
independent ones. In particular, the time change of permittivity creates an additional 
conduction current. 
 
 
5.  Equations of the second order in time domain 
 
By taking in system (6) curl from both sides of (I) and substituting (II, III) into (I) one 
obtains for the electric field: 
 

( ) ( ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

=Δ EEE ** 2

2

εσμ
tt

) ,                                                            (16) 

 
or, by using several times the auxiliary formulae (A1) and (A2), 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
∂

∂
+

∂
∂

+
∂

∂
∂

∂
+

∂
∂

+

+−
∂

∂
+

∂
∂

+
∂

∂

=Δ

∫

∫

==

=

t

tt

t

t

dtt
t

t
t
t

t
t

t
t

dtt
t
t

t
t

0
3

3

02

2

02

2

0
2

2

0

0

0

λλ
λ
λεεεε

λλ
λ
λσσσ

μ
EEEE

EEE

E . (17) 

 
Equation (17) is presented by two groups of terms originally related to the 
conductivity and its change with time (line 1), as well as to permittivity and its change 
with time (line 2). If to assume the change of parameters σ(t) and ε(t) with time is 
slow enough to neglect last terms in both lines of (17), then 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂

∂
+

∂
∂
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+=Δ === 2

2

02

2

00 00
t

tt
t

t
t
t

t
t

t
t

ttt
EEEE εεσεσμ

.  18) 

 
If two fore-last terms in both lines of (17) are also abandoned, then 
 

( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

=Δ 2

2

00
t

t
t
t EEE εγμ

,                                                          (19) 
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where ( )0γ  is defined by (12). 
It is possible in the last case to speak about the quasi-stationary EM field in 
dispersive medium, where normal displacement current can be also abandoned. 
Then 
 

( ) ( )
t
t

∂
∂

=Δ
EE 0μγ .                                                                                 (20) 

 
Equations (19 and 20) look similar to common Telegrapher’s and heat-flow equations 
respectively, except for the difference between admittivity and common conductivity 
σ=const. That means, the replacing of both time-independent electric parameters by 
very slow changeable once only is possible in time domain. Otherwise the basic 
equations of the second order are different. 
Similarly, by taking into account in addition A3, for the magnetic field: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=Δ
ttt
HHH ** εσμ = ( ) ( ) =⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂ HH ** 2

2

εσμ
tt

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
∂

∂
+

∂
∂

+
∂

∂
∂
∂

+
∂

∂
+

+−
∂

∂
+

∂
∂

+
∂

∂

=

∫

∫

==

=

t

tt

t

t

dtt
t

t
t
t

t
t

t
t

dt
t
t

t
t

0
3

3

02

2

02

2

0
2

2

0

0

0

λλ
λ
λεεεε

λλ
λ
λσσσ

μ
HHHH

HtHH

.      (21) 

 
Therefore, all equations (17-20) above for the electric field are same for the magnetic 
one. 
 
 
6.  Equationsof the EM field in frequency domain 
 
In accordance with the convolution theorem 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[  or   ,* 11 ppfLttfp
p
pfLttf FFFF ⋅=∗⎥

⎦

⎤
⎢
⎣

⎡
⋅= −− ] ,                (22) 

 
provided ( ) ( )[ ]ppfLtf /1−= , ( ) ( )[ ]pfLtf 1−=  and ( ) ( )[ ]pLt FF 1−= , where  is the 
symbol of the inverse Fourier/Laplace transform with p=-iω.  

1−L

The subject to study in time domain is normally the parameter f(t), which is the 
transient characteristic of the medium or reaction of the medium to the step-type  
energizing the EM field described by the 1(t) function with the spectrum 1/p, whereas 

 is the impulse characteristic of the medium or reaction of the medium to the 
pulse-type energizing the EM field described by the δ(t) function with the uniform 
spectrum 1(p). The subject to study in frequency domain is the frequency 
characteristic f(p) of the medium, corresponding to the uniform spectrum. That is way 

( )tf
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one has to consider the Duhamel integral f(t)*F(t) in time domain and the product 
f(p)F(p) in frequency domain.  
Then, the system (6) of Maxwell’s equations looks in frequency domain like  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0p IV. 0, III.

 , .II , I.
==

+==
BE

pEEHBE
divpdiv

pppppcurlpppcurl εσ
.                     (23)  

 
Corresponding transforms of equations (16) and (21) of the second order are of the 
form 
 
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }pHpEpHpEHE  , , , 2 pppp εσμ +=Δ ,                              (24) 

 
which brings us with p=-iω to the Helmholtz equation  
 
( ) ( ) 0,, 2 =+Δ HEHE k                                                                            (25) 

 
with the square wave-number  
 

( ) ( )ωμεωωωμσ 22 += ik                                                                       (26) 
 
and frequency dependent conductivity ( )ωσ  and permittivity ( )ωε . 
Therefore, the EM field in frequency domain (contrary to time domain) is described 
by one and the same equation of the second order, both in non-dispersive and 
dispersive media. That means the spectral method is a universal one.  
It should be noted that while studying IP effects in frequency domain (similar to time 
domain) the separate analyses of dispersion of parameters σ or ε is not correct, 
including the quasi-stationary case. The combination of both parameters known as 
complex admittivity ( ) ( ) ( )ωωεωσωγ i−=  is to be analyzed. Otherwise, the 
interconnection between dispersions of conductivity and permittivity, clearly seen 
from time domain formulae, can not be detected by spectral method. 
 
 
8.  Conclusions  
 
1. The system of Maxwell’s equations themselves written in canonical form is a 
universal means of describing EM field both in non-dispersive and dispersive media, 
provided material correlations are presented by Duhamel integrals. Terms such as 
“non-classical electromagnetics/geoelectrics”, as applied to IP effects in geo-
electromagnetics, make no sense. 
2. In time domain, additional conductivity and displacement currents appear due to 
changes in conductivity and permittivity parameters with time. 
3. Equations of the second order in dispersive medium are in time domain different 
from Telegrapher’s and heat-flow equations. Even, in case of a very slow change in 
the parameters over time, only the equation format is the same, but they still include 
the summary admittivity consisting of normal conductivity and time derivative of 
permittivity. Therefore, methods of replacing constant parameters with time variable 
ones are in time domain principally not correct and are possible in case of a very 
slow time change of both electric parameters only.. 
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4. The equation of the second order in frequency domain is in dispersive medium the 
same Helmholtz equation. The method of substituting constant parameters by 
frequency variable ones is in frequency domain correct. The complex admittivity 
including both frequency dependent conductivity and permittivity is to be analyzed, 
inclusive the quasi-stationary case. Otherwise, the interconnection between 
dispersions of conductivity and permittivity, clearly seen from time domain formulae, 
can not be detected by spectral method.  
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Appendix A: Auxiliary formulae 
 
1. By taking account zero initial values of the EM field component one obtains: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

{ ( ) ( )[ ] ( ) ( ) } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )

( ) ( ) ( ) ( ) .0

00

0*

0

0 000

0 0 00

λλ
λ
λ

λλλλλλλλλλ

λλλ
λ
λλλλ

λ
λλλλ

dtftf

dfttftfdfttfdfttfd

tdftd
t
tfdtftfdtf

dt
df

t

t ttt

t t tt

∫

∫ ∫∫

∫ ∫ ∫∫

−
∂

∂
+=

=−+−−=−+−−=−−−−=

=−−=−
−∂
−∂

−=−
∂
∂

+=−⋅=

FF

FFFFFFF

FFFFFF

                        

(A1) 
 
2. 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .0*0

0 A1...see...*

0
2

2

0

00

λλ
λ
λ

λ
λ
λλλλλ

dtft
t
tf

t
tf

t
f

t
tdf

dfttf
dt
ddtf

dt
d

dt
df

t
t

t

tt

−
∂

∂
+

∂
∂

+
∂

∂
=

∂
∂

+
∂

=

=⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−+==⎥

⎦

⎤
⎢
⎣

⎡
−=

∂
∂

∫

∫∫

= FFFFF

FFFF
                             

(A2) 
 
3. If to reverse roles of functions f and F  in A2, then 
 

( ) ( ) ( )
t

ff
tt

tff
t ∂

∂
=

∂
∂

+
∂
∂

=
∂
∂ FFFF **0* ,                                               (A3) 

 
 
Appendix B: Dispersion of magnetic permeability  
 
Suppose now that the magnetic permeability is variable parameter, whereas the 
conductivity and permittivity are constant. Then the material correlations are: 
 

HBEDEjd *     ,     , μεσ === , 
 
and Maxwell’s equations: 
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( ) 0. IV. 0, III. ,  II. ,*- I. ==

∂
∂

+=
∂

∂
= BEEEHHE divdiv

t
curlt

t
curl εσμ  

 
By transformations (similar to those used in section 5 of the main text) it can be 
shown that equation of the second order in time domain for the electric field (and 
similarly for the magnetic field) is of the form: 
 

( ) ( ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
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with ( ) ( ) ( )  H/m104   ,41/ 7−⋅=+== πμπχμμμ vv ttt .  
In case of slow change of magnetic permeability, where last two terms in both lines of 
the previous equation are abandoned: 
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where the summary admittivity 
  

( ) ( ) ( )
000 =∂

∂
+= tt

tμεμσγ μ . 

 
The last term of summary admittivity presents the additional conductivity due to the 
change of the magnetic permeability over time. 
Therefore, except for small necessary changes, equations of the EM field in the 
media with dispersive magnetic permeability are in time domain the same as for the 
media with dispersive electric parameters. It is evident also that in frequency domain 
the equation of the second order is the same Helmholtz equation with the squared 
wave number containing the frequency dependent magnetic permeability ( )ωμ . 
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